ISSN(P): 2278-9928; ISSN(E): 2278-9936

ON THE DERIVATIVE OF SLOW GROWTH OF ANALYTIC FUNCTIONS IN THE HALF PLANE

ANUPMA RASTOGI
Assistant Professor, Department of Mathematics, Lucknow University, Lucknow, India

Abstract

If $\mathrm{f}(\mathrm{s})=\sum_{n=1}^{\infty} a_{n} e^{\mathrm{s} \lambda m}$ be a Dirichlet series, where $\mathrm{s}=\sigma+\mathrm{it}$. $\mathrm{f}^{(\mathrm{n})}(\mathrm{s})$ denote the derivative of $\mathrm{f}^{(\mathrm{s})}$. And it is also analytic for $\sigma<\alpha$. The growth of analytic function $\mathrm{f}(\mathrm{s})$ is studied through the order, lower order and type etc. Using the results we find, the relative growth of $m\left(\sigma_{1} f^{(n)}\right)$ and $N\left(\sigma_{1} f^{(n)}\right)$ with respect to $m\left(\sigma_{1} f\right)$ and $N\left(\sigma_{1} f\right)$, where $m\left(\sigma_{1} f\right)$ and $N\left(\sigma_{1} f\right)$ are known as maximum term and rank of maximum term.

KEYWORDS: Dirichlet Series, Analytic Function, Derivative Order, Lower Order

INTRODUCTION

Let $\mathrm{f}(\mathrm{s})=\sum_{n=1}^{\infty} a_{n} e^{z \lambda n}$ be a Dirichlet series, where $0<\lambda_{1}<\lambda_{2}<\ldots . .<\lambda_{\mathrm{n}} \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$, $\mathrm{s}=\sigma+$ it (σ and t are real) and $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers. We assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=\delta>0 \tag{1.1}
\end{equation*}
$$

Then we also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Sup}\left(\frac{n}{A_{n}}\right)=\mathrm{D}<\infty \tag{1.2}
\end{equation*}
$$

The Dirichlet series defined above represents an analytic function in the half plane $\sigma<\alpha$ [1], [4]

$$
\begin{equation*}
\alpha=\lim _{n \rightarrow \infty} \operatorname{Sup} \frac{\log \left|a_{n}\right|^{-4}}{\lambda_{n}} \tag{1.3}
\end{equation*}
$$

For $\sigma<\alpha, \mathrm{M}(\sigma), \mathrm{M}(\sigma)$ and $\mathrm{N}(\sigma)$ are defined as follows:
$\mathrm{M}(\sigma)=\underset{-\infty<\leqslant t \leqslant \mathrm{col}}{\mathrm{Iuv}}|f(\sigma+\mathrm{it})|$,
$\mathrm{M}(\sigma)=\operatorname{mae}_{n \geqq 1}\left\{a_{n} \mid e^{\operatorname{eAn}}\right\}$,
And $N(\sigma)={ }_{n \geq 1}^{m a x}\left[n: m(\sigma)=\left|a_{n}\right| e^{\sigma A n}\right]$,
Let $f^{(n)}(s)$ denote the $n^{\text {th }}$ derivative of $f^{(s)}$. Then $f^{(n)}(s)$ is also analytic for $\sigma<\alpha$. Likewise, $M\left(\sigma_{1} f^{(n)}\right), m\left(\sigma_{1} f^{(n)}\right)$, $n\left(\sigma_{1} f^{(n)}\right)$ can also be defined for the derivative $f^{(n)}(s)$.

The growth of analytic function $f(s)$ is studied through the order, lower order and type etc. The order P and lower order λ, of $\mathrm{f}(\mathrm{s})$ are defined as [2]
$\limsup _{a \rightarrow \alpha \inf } \frac{\log \log M(\sigma)}{\log \left(1-\theta^{\sigma-a}\right)^{-1}}=\frac{p}{\lambda}(0 \leq \lambda \leq \mathrm{P} \leq \infty)$
The study the growth of analytic function $\mathrm{f}(\mathrm{s})$ when the order $\mathrm{P}=0$, the concept of logarithmic order P^{*} and lower logarithmic order λ^{*} of $f(s)$ introduced and they are defined as [3]
$\lim _{\sigma \rightarrow \sup } \frac{\log \log M(\sigma)}{\log \log \left(1-\theta^{\sigma-N_{2}}\right)^{-1}}=\frac{p^{*}}{\lambda^{*}}\left(1<\lambda^{*} \leq \mathrm{P}^{*}<\infty\right)$
It has also been proved that
$\lim _{\Delta \rightarrow \sup } \frac{\log \log M(\sigma)}{\log \log \left(1-\xi^{\sigma-y^{-1}}\right.}=\frac{p^{*}}{\lambda^{*}}$

And
$\mathrm{P}^{*}-1 \leq \lim _{\sigma \rightarrow \alpha} \operatorname{Sup} \frac{\log \left[\lambda_{N(\alpha)}\left(1-z^{\sigma-\alpha}\right)\right]}{\log \log \left(1-\theta^{\sigma-\alpha}\right)^{-2}} \leq \mathrm{P}^{*}$
The coefficient characterization of logarithmic order P^{*} have been obtained under the stronger condition as (1.1)
$\operatorname{Max}\left\{1_{0}, \lim _{n \rightarrow \infty} \sup \frac{\log ^{+}\left(\alpha \lambda_{n}+\log \left|a_{n}\right|\right.}{\log \log \lambda_{n}}\right\}=P^{*}$
In this chapter we study the relative growth of $m\left(\sigma_{1} f^{(n)}\right)$ and $N\left(\sigma_{1} f^{(n)}\right)$ with respect to $m\left(\sigma_{1} f\right)$ and $N\left(\sigma_{1} f\right)$.
2. Theorem 1: Let $\mathrm{f}(\mathrm{s})=\sum_{n=1}^{\infty} a_{n} e^{z A n}$ be analytic function in the half plane $\sigma<\alpha$, satisfying (1.3). If logarithmic order of $f(s)$ then
$\lim _{\theta \rightarrow \sup } \quad \frac{\log \log M\left(\sigma_{1} f^{[1}\right)}{\log \log \left(1-\otimes^{\sigma-a}\right)^{-1}}=\frac{p^{*}}{\lambda^{*}}\left(1<\lambda^{*} \leq \mathrm{P}^{*}<\infty\right)$
Where $f^{(1)}(s)$ is the derivative of $f(s)$.
Proof we have
$\mathrm{f}\left({ }^{1)}(\mathrm{s})=\sum_{n=1}^{\infty} a_{n} \lambda_{n} e^{z \lambda n}\right.$
The above series converges absolutely for $\sigma \leq \alpha_{1}<\alpha$. Hence we have
$\left|a_{n}\right| \lambda_{n}={ }_{T \rightarrow \infty}\left|\frac{1}{2 T} \int_{-T}^{T} e^{-(\sigma+i t) A n} f^{(1)}(\sigma+i t) d t\right|$
Or $\left|a_{n}\right| \lambda_{n}<\exp \left(-\sigma \lambda_{n}\right) M\left(\sigma_{1} f^{(1)}\right)$ for all values of n. Then we have
$\lambda_{\mathrm{N}(\sigma)} \mathrm{m}(\sigma)<\mathrm{M}\left(\sigma_{1} \mathrm{f}^{(1)}\right)$
Or $\frac{\log \log m(\sigma)}{\log \log \left(1-e^{\sigma-w}\right)^{-1}}+\frac{\log \left[1+\log \lambda_{N(\sigma)} / \log M(\sigma)\right.}{\log \log \left(1-e^{\sigma-m)^{-1}}\right.}$
$\leq \frac{\log \log M(\sigma)}{\log \log \left(1-\theta^{\sigma-a)^{-1}}\right.}$

Taking limits as $\sigma \rightarrow \alpha$ we get (2.1),
To obtain reverse inequality, use (1.8).
For any given $\in>0$ and all $n>n(\epsilon)$ we have
$\log \left|a_{n}\right|<\left(\log \lambda_{n}\right)^{\mu}-\alpha \lambda_{n}, \mu=P *+\epsilon$.
Also
$\mathrm{M}\left(\sigma_{1} \mathrm{f}^{(1)}\right) \leq \sum_{n=1}^{\infty} \exp \left[2\left(\log \lambda_{n}\right)^{\mu}+(\sigma-\alpha) \lambda_{n}\right]$
$\operatorname{OrM}\left(\sigma_{1} \mathrm{f}^{(1)}\right) \leq \mathrm{Q}\left(\mathrm{n}_{0}\right)+\sum_{n=n_{0+1}}^{\infty} \exp \left[2\left(\log \lambda_{n}\right)^{\mu}+(\sigma-\alpha) \lambda_{n}\right]$,

Where $\mathrm{Q}\left(\mathrm{n}_{0}\right)$ is the sum of first n_{o} terms and is bounded. Now it can easily be seen that if
$\mathrm{H}(\mathrm{x})=(\log \mathrm{x})^{\mu}-\mathrm{r}_{\mathrm{x}}, \quad \mathrm{r}>0$
Then $\max _{\max H(x)}=\left[\log \left(\frac{\mu}{r}\right)\right]^{\mu}-\mu$
$\mathrm{M}\left(\sigma_{1} \mathrm{f}^{(1)}\right)<0(1)+\mathrm{N} \exp \left[2\left(\log \frac{2_{\mu}}{\alpha-\sigma}\right)^{\mu}-\mu\right]+$
$\sum_{n=N+1}^{\infty} \exp \left[2\left(\log \lambda_{n}\right)^{\mu}-(\alpha-\sigma) \lambda_{n}\right]$
Also for σ sufficiently close to α and $\mathrm{n}>\mathrm{N}$, we have
$\Sigma_{n=N+1}^{\infty} \exp \left\{2\left(\log \lambda_{n}\right)^{\mu}-(\alpha-\sigma) \lambda_{n}\right\}<\sum_{n=N=1}^{\infty}\left\{\frac{-n(\alpha-\sigma)}{2(D-\varepsilon)}\right\}$
Where $\lambda_{n}>\log \left(\frac{4}{a-\sigma}\right)$ and $\lim _{n \rightarrow \infty} \sup \quad \frac{n}{\lambda_{n}}=D<\infty$
$\therefore \sum_{n=N+1}^{\infty} \exp \left\{\left(2 \log \lambda_{n}\right)^{\mu}-(\alpha-\sigma) \lambda_{n}\right\}=0=1 \quad$ as $\sigma \rightarrow \alpha$
Hence $\lim _{\sigma \rightarrow \alpha} \sup \quad \frac{\log \log M\left(\sigma f^{f(\alpha)}\right)}{\log \log \left(1-\varepsilon^{\sigma-\alpha}\right)^{-1}}<\mathrm{P}^{*}$

Again since $1<\lambda^{*}<\infty$, them from (1.6) and (1.7) we have for any arbitrary small $\in>0$, $\log \mathrm{m}(\sigma)>\left[\log \left(1-\mathrm{e}^{\sigma-\alpha}\right)^{-1}\right] \lambda^{*}-\epsilon$

And $\left.\log \left[\lambda_{N(\sigma)(1}-\mathrm{e}^{\sigma-\alpha}\right)\right]<\log \left\{\log \left(1-\mathrm{e}^{\sigma-\alpha}\right)\right\} \mathrm{P}^{*}+\epsilon$
Therefore
$\lim _{\sigma \rightarrow \alpha} \sup \quad \frac{\log \lambda_{M_{\alpha L}}}{\log M(\sigma)}=0$

Similarly
$\lim _{x \rightarrow \alpha} \frac{\log \lambda_{N(\sigma A} f(\alpha)}{\log m\left(\sigma f^{\prime}(1)\right)}=0$

Also from (2.2)

$$
\begin{equation*}
\left.\mathrm{m}\left(\sigma_{1} \mathrm{f}^{(1)}\right) \leq \mathrm{m}(\sigma) \lambda_{\mathrm{N}(\sigma \mathrm{flf}(1)}\right) \tag{2.9}
\end{equation*}
$$

Or

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \inf \quad \frac{\log \log m\left(\sigma f^{(1)}\right)}{\log \log \left(1-\theta^{\sigma-a}\right)^{-1}} \leq \lambda^{*} \tag{2.10}
\end{equation*}
$$

Or

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \inf \frac{\log \log M\left(\sigma f^{(1)}\right)}{\log \log \left(1-e^{\sigma-\alpha}\right)^{-1}} \tag{2.11}
\end{equation*}
$$

Combining the results (2.4), (2.6) and (2.11) we get (2.1). Now we will prove some results which connect $m(\sigma, f)$ and $m\left(\sigma, f^{(1)}\right)$.
3. Theorem 2: Let $\mathrm{f}(\mathrm{s})=\sum_{n=1}^{\infty} \alpha_{n e^{z a n}}$ be analytic in a half plane $\sigma<\alpha$, of logarithmic order P^{*} and lower logarithmic order λ^{*}, where $1<\lambda^{*}<\mathrm{P}^{*}<\infty$, than

$$
\begin{equation*}
\lim _{\sigma \rightarrow \alpha} \frac{\log \left[\left(m \frac{\left(\sigma f^{(\alpha)}\right)}{m(\sigma f)}\right)\left(1-e^{\sigma-\alpha}\right)\right]}{\log \log \left(1-e^{\sigma-\alpha}\right)^{-1}}=\mathrm{P}^{*} \tag{3.1}
\end{equation*}
$$

Prof we have from (2.10)
$\left.\mathrm{m}\left(\sigma_{1} \mathrm{f}^{(1)}\right)<\mathrm{m}(\sigma) \lambda_{\mathrm{N}(\sigma \mathrm{If}(\mathrm{l})}\right)$
Again $m(\sigma)=\left|\mathrm{a}_{\mathrm{N}(\sigma)}\right| \exp \left(\sigma \lambda_{N(\sigma)}\right)=\frac{\left|a_{N(\sigma)}\right| \lambda_{N(\sigma)} \exp \left\{\sigma \lambda_{N(\sigma)}\right.}{\lambda_{N(\sigma)}}$
Therefore,
$\mathrm{m}(\sigma) \leq \mathrm{m}\left(\sigma_{1} \mathrm{f}^{(1)} / \lambda_{\mathrm{N}(\sigma)}\right.$
From (3.2) and (3.3) we get
$\lambda_{N(\sigma)} \leq \frac{m\left(\sigma_{1} f^{(1)}\right.}{m\left(\sigma_{1} f\right)} \leq \lambda_{N\left(\sigma_{1} f^{(1)}\right)}$
From the above inequality we have
$\frac{\log \left[\lambda_{N(\sigma)}\left(1-e^{\sigma-a}\right)\right]}{\log \log \left(1-e^{\sigma-a y}\right)^{-1}}<\frac{\log \left\{m\left(\sigma_{1} f^{(1)}\right)_{\left(1-\frac{e^{\sigma-a}}{m\left(\sigma_{1} f\right)}\right.}^{\log \log \left(1-e^{\sigma-a}\right)^{-1}}\right.}{\log }$
Taking superior limit and using (1.7) we get

$$
\begin{equation*}
\mathrm{P}^{*} \leq \operatorname{lin} \operatorname{\sigma up} \frac{\log \left[\left[m \frac{\left(\sigma_{1} f(1)\right.}{m}\left(\sigma_{1} f\right)\right.\right.}{} \frac{\left(1-\varepsilon^{\sigma-\alpha}\right)}{\log \log \left(1-\theta^{\sigma-\sigma}\right)^{-1}} \tag{3.5}
\end{equation*}
$$

But the theorem $1, \mathrm{f}^{(1)}(\mathrm{s})$ is also analytic function of some logarithmic order P^{*} and lower order λ^{*}. Therefore,
using other half of (3.4) we get

$$
\begin{equation*}
\operatorname{lin}_{a \rightarrow \alpha} \operatorname{Sup} \frac{\log m \frac{\left(a_{1} f^{(1)}\right)\left(1-\varepsilon^{a-a}\right)}{m\left(\sigma_{1} f\right)}}{\log \log \left(1-\varepsilon^{\sigma-a)^{-1}}\right.} \tag{3.6}
\end{equation*}
$$

Combing (3.5) and 3.6), we get (3.1)
Corollary 1: If $\mathrm{f}(\mathrm{s})$ is of logarithmic order P^{*} and lower logarithmic order λ^{*}, when $1<\lambda^{*}<\mathrm{P}^{*}<\infty$ and $\mathrm{f}^{(\mathrm{n})}(\mathrm{s})$, then

Proof: Writing (3.4) for $K^{\text {th }}$ derivative of $f(s)$, we have

$$
\begin{equation*}
\lambda_{\mathrm{N}(\sigma \mathrm{fl}(1))} \leq \frac{m\left(\sigma_{2} f^{[k)}\right.}{m\left(\sigma_{1} f^{(k-1)}\right)} \leq \lambda_{\mathrm{N}\left(\sigma, \mathrm{f}^{\mathrm{k}}\right)} \tag{3.8}
\end{equation*}
$$

If follows from the definition that
$\lambda_{\mathrm{N}(\sigma)} \leq \lambda_{\mathrm{N}(\sigma \mathrm{flf}}(1) \mathrm{s}, \ldots . . \lambda_{\mathrm{N}(\sigma 1 \mathrm{f}}(\mathrm{n})_{)} \leq \ldots .$.
Putting $\mathrm{K}=1,2, \ldots . \mathrm{n}$ in (3.8) and multiplying all the inequalities thus obtained. We get
$\left.\lambda \mathrm{N}(\sigma) \leq\left[\frac{m\left(c_{1} f^{(n)}\right.}{m\left(\sigma_{1} f\right)}\right]^{1 / n} \leq \lambda_{\mathrm{N}(\sigma \mathrm{f})}(1)\right)$
Now multiplying (3.9) by ($1-\mathrm{e}^{\sigma-\alpha}$) and taking limits we get the result (3.7) using (1.7) and (3.9).
Corollary 2: For $1<\mathrm{P}^{*}<\infty$ and for all $\sigma_{1} \sigma_{0}<\sigma<\alpha$ we have
$m\left(\sigma_{1} f^{(n)}<m(\sigma)\left[\log \left(1-e^{\sigma-\alpha}\right)^{-1}\right]^{n P^{*}-\epsilon}\left\{\left(1-e^{\sigma-\alpha}\right)^{-1}\right\}^{n}\right.$
We obtain this result directly from (3.7)
4. Let $\left.\mathrm{w}\left(\sigma_{1} \sigma\right)=\lambda_{\mathrm{N}(\sigma \mathrm{flf}}{ }^{(\mathrm{N})}\right)-\lambda_{\mathrm{N}(\sigma)}$

Then $w\left(\sigma_{1} n\right)$ is a non negative, non decreasing difference function of σ for $n=1,2, \ldots .$. Let us assume that $f(s)$ is function of logarithmic order P^{*} and lower logarithmic order $\lambda^{*}, 1<\lambda^{*}<\mathrm{P}^{*}<\infty$ and
$\mathrm{w}(\sigma 1 \mathrm{n}) \rightarrow \infty$ as $\sigma \rightarrow \alpha$ for any $\mathrm{n}=1,2, \ldots \ldots$
Now we prime the following theorem
Theorem 3: For $n=1,2, \ldots$. and for some suitable value σ_{0}, we have
$\mathrm{P}^{*}=\frac{1}{n \log \log \left(1-a^{\sigma-a}\right)^{-1}} \int_{\sigma_{0}}^{\sigma}(w(y, n)+n 2(\mathrm{y})\} \mathrm{dy}$
Where $v(y)=e^{y-\alpha} / 1-e^{y-\alpha}$
Proof: For an analytic function $f(s)$ defined by (1.1) we have (3.7)
$\log \mathrm{m}(\sigma)=0(1)+\int_{\sigma_{0}}^{\sigma} \lambda_{N_{(Y)}} d y, \sigma_{0}<\sigma<\alpha$

Hence we have
$\log \mathrm{m}\left(\sigma_{1} \mathrm{f}^{(\mathrm{n})}\right)=0(1) \mathrm{D} \int_{\sigma_{0}}^{\sigma} \lambda_{N\left(y \cdot f^{(n)}\right)} d y$

Thus from (4.2) and (4.3) we have for all $\sigma_{1}, \sigma_{0}<\sigma<\alpha$
$\log \left\{\frac{m\left(\sigma_{1} f^{(n)}\right.}{m\left(\sigma_{1} f\right)}\right\}^{1 / n}=0(1)+\frac{1}{n} \int_{\sigma_{0}}^{\sigma} w\left(y_{s} n\right) d y$
or $\log \left\{\left\{\frac{\left(\frac{m\left(a_{1} f^{n}\right)}{m\left(a_{1} f\right)}\right.}{}{ }^{\frac{1}{n}}\left(1-e^{\sigma-\alpha}\right)\right\}\right.$
$=0(1)+\frac{1}{n} \int_{\sigma_{0}}^{\sigma} w(y, n)+\int_{\sigma_{0}}^{\alpha} \frac{e^{y-a}}{1-e^{y-a}} d y$
$=0(1)+\frac{1}{n} \int_{\sigma_{0}}^{\infty}[w(y, n)+n v(y)] d y$.

Dividing both the sides by $\log \log \left(1-\mathrm{e}^{\sigma-\alpha}\right)^{-1}$ and taking superior limit we get (4.1).

REFERENCES

1. Mandelbrojt, S. Dirichlet Series Rice Institute Pamphlet,31(4), (1944), pp. 157 - 272
2. Nandan, K. On the maximum term and maximum modulus of analytic function represented by Dirichlet series, Ann. Pol. Math. 28(1973), pp. 213 - 222
3. Awasthi, W.N. \& Dixit, K. K. On the logarithmic type of analytic functions represented by Dirichlet series, Indian, J. Pure Appl. Math. 10(2); 1979a, pp. 171-0182
4. Kumar, N. \& Srivastava, G. S. On the derivative of a function analytic in a half plane Indian J. Math. Vol. 33, no. 1, 1991, pp. $87-97$.
